A Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow

نویسندگان

  • Satoru Iwata
  • S. Thomas McCormick
  • Maiko Shigeno
چکیده

This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary min-cost flow. The algorithm scales a relaxed optimality parameter, and creates a second, inner relaxation that is a kind of submodular max flow problem. The outer relaxation uses a novel technique for relaxing the submodular constraints that allows our previous proof techniques to work. The algorithm uses the min cuts from the max flow subproblem as the relaxed most positive cuts it chooses to cancel. We show that this algorithm needs to cancel only O(n3) cuts per scaling phase, where n is the number of nodes. Furthermore, we also show how to slightly modify this algorithm to get a strongly polynomial running time. Finally, we briefly show how to extend this algorithm to the separable convex cost case, and that the same technique can be used to construct a polynomial time maximum mean cut canceling algorithm for submodular flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*

This paper presents two fast cycle canceling algorithms for the submodular flow problem. The first uses an assignment problem whose optimal solution identifies most negative node-disjoint cycles in an auxiliary network. Canceling these cycles lexicographically makes it possible to obtain an optimal submodular flow in O(nh log(nC)) time, which almost matches the current fastest weakly polynomial...

متن کامل

Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow

This paper presents two new scaling algorithms for the minimum cost network flow problem, one a primal cycle canceling algorithm, the other a dual cut canceling algorithm. Both algorithms scale a relaxed optimality parameter, and create a second, inner relaxation. The primal algorithm uses the inner relaxation to cancel a most negative node-disjoint family of cycles w.r.t. the scaled parameter,...

متن کامل

A polynomial cycle canceling algorithm for submodular flows

Submodular ow problems, introduced by Edmonds and Giles 2], generalize network ow problems. Many algorithms for solving network ow problems have been generalized to submodular ow problems (cf. references in Fujishige 4]), e.g. the cycle canceling method of Klein 9]. For network ow problems, the choice of minimum-mean cycles in Goldberg and Tarjan 6], and the choice of minimum-ratio cycles in Wa...

متن کامل

Core Discussion Paper 9947 a Faster Capacity Scaling Algorithm for Minimum Cost Submodular Flow

We describe an O(nh min{log U, n log n}) capacity scaling algorithm for the minimum cost submodular flow problem. Our algorithm modifies and extends the Edmonds–Karp capacity scaling algorithm for minimum cost flow to solve the minimum cost submodular flow problem. The modification entails scaling a relaxation parameter δ. Capacities are relaxed by attaching a complete directed graph with unifo...

متن کامل

New polynomial-time cycle-canceling algorithms for minimum-cost flows

The cycle-canceling algorithm is one of the earliest algorithms to solve the minimum cost flow problem. This algorithm maintains a feasible solution x in the network G and proceeds by augmenting flows along negative cost directed cycles in the residual network G(x) and thereby canceling them. For the minimum cost flow problem with integral data, the generic version of the cycle-canceling algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005